
Deep Learning for Data Science
DS 542

https://dl4ds.github.io/fa2025/
Initialization

Original slides by Tom Gardos,
other content from Understanding Deep Learning unless otherwise cited

1

https://dl4ds.github.io/fa2025/

Plan for Today

• Project 1
• The need for weights initialization
• Expectations Refresher
• The (Kaiming) He Initialization
• Lottery tickets

2

Initialization

• Consider standard building block of NN in terms of pre-
activations:

• How do we initialize the biases and weights?
• Equivalent to choosing starting point in our gradient descent

searches

3

Forward Pass
• Consider standard building block of NN in terms of pre-activations:

• Set all the biases to 0

• Set weights to be normally distributed
• mean 0
• variance 𝜎Ω

2

• What will happen as we move through the network if 𝜎Ω
2 is very small?

• What will happen as we move through the network if 𝜎Ω
2 is very large?

4

Backward Pass

• What will happen as we propagate backwards
through the network if 𝜎Ω

2 is very small?

• What will happen as we propagate backwards
through the network if 𝜎Ω

2 is very large?

5

Initialize weights to different variances

Exploding gradients

Vanishing gradients

100D Input
~ 𝑁(0,1)

6

How do we initialize weights to keep variance
stable across layers?

7

Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

Definition of variance:

8

Any Questions?

??? • The need for weights
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets

Expectations

Interpretation: what is the average value of g[x] when taking into account the probability of x?

Consider discrete case and assume uniform probability so calculating g[x] reduces to taking average:

10

Common Expectation Functions

11

Rules for manipulating expectation

12

Any Questions?

??? • The need for weights
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets

Aim: keep variance same between two layers

𝜎
𝑓𝑖

′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

Definition of variance:

14

Now let’s prove:

Keeping in mind:

15

Rule 1:

Rule 2:

Rule 3:

Def’n

16

Rule 1:

Rule 2:

Rule 3:

Def’n

17

Rule 1:

Rule 2:

Rule 3:

Def’n

18

Rule 1:

Rule 2:

Rule 3:

Def’n

19

Rule 1:

Rule 2:

Rule 3:

Def’n

20

Rule 1:

Rule 2:

Rule 3:

Def’n

21

Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′2 − 𝔼 𝑓𝑖
′ 2

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

22

Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′2 − 𝔼 𝑓𝑖
′ 2

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

23

Focus on this term.

Aim: keep variance same between two layers

Consider the mean of the pre-activations:

24

Rule 1:

Rule 2:

Rule 3:

Rule 4:

25

Rule 1:

Rule 2:

Rule 3:

Rule 4:

26

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Start making initialization choices.

• Set all the biases to 0

• Weights normally distributed
• mean 0
• variance 𝜎Ω

2
 27

Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′2 − 𝔼 𝑓𝑖
′ 2 = 𝔼 𝑓𝑖

′2

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

0
28

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Set all the biases to 0

Weights normally distributed
mean 0
variance 𝜎Ω

2

29

Initialization choices.

• Set all the biases to 0

• Weights normally distributed
• mean 0
• variance 𝜎Ω

2

Rule 1:

Rule 2:

Rule 3:

Rule 4:

30

Rule 1:

Rule 2:

Rule 3:

Rule 4:

For all the cross
terms, 𝐸 Ωij = 0 so
only the squared
terms are left, then
use independence.

31

Initialization choices.

• Set all the biases to 0

• Weights normally distributed
• mean 0
• variance 𝜎Ω

2

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Because the Ω’s are
zero mean, this is the
variance.

32

Initialization choices.

• Set all the biases to 0

• Weights normally distributed
• mean 0
• variance 𝜎Ω

2

From the definition of expectation.

Only positive integral limits
because of ReLU

½ of the variance for zero mean
distribution

33

Aim: keep variance same between two layers

Should choose:

This is called He initialization or Kaiming initialization.

𝜎𝑓′
2 = 𝜎𝑓

2

Since:

To get:

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” Proc. IEEE International Conference
on Computer Vision, 2015, pp. 1026–1034. Accessed: Feb. 11, 2024. 34

Kaiming He何恺明

https://people.csail.mit.edu/kaiming/

He initialization (assumes ReLU)

• Forward pass: want the variance of hidden unit activations in
layer k+1 to be the same as variance of activations in layer k:

• Backward pass: want the variance of gradients at layer k to be the
same as variance of gradient in layer k+1:

Number of units at layer k

Number of units at layer k+1

35

Exploding gradients

Vanishing gradients

36

Default Initialization in PyTorch
https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_

37

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_

Any Questions?

??? • The need for weights
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets

Initialization Note

A good initialization does not prevent gradient descent from changing the
weights a lot.

● A good initialization keeps the initial gradients modestly sized,
● And modest gradients reduce wild swings in parameters with

gradient descent
● Smaller learning rates also help with this.
● Next week’s topic, regularization, will directly address this.

Limitations of Initialization

● No guarantees that the model will train to low losses
● No guarantees that training process won’t lead to large values or

gradients
● No guarantees that the model won’t have lots of inactive units

○ In fact, the estimates adjusted for half being inactive!

● In fact, much of the network is often useless, and could be pruned
away!

The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks
Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%,
decreasing storage requirements and improving computational performance of inference without compromising
accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to
train from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them
capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense,
randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in
isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning
tickets we find have won the initialization lottery: their connections have initial weights that make training
particularly effective.

We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket
hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less
than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and
CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher
test accuracy.

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

Any Questions?

??? • The need for weights
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets

Disclaimer

• Just because variance of gradients starts the same does not mean
that the variance of gradients stays the same.

• You should still check the gradients if you are having training
difficulties…

Bonus Tip

• If you are trying to implement a model based on a paper, and you
are having trouble training, check if they shared their code.
• Many papers omit important initialization details.

• Especially if they say that their method is not sensitive to initialization.

• Also, some paper descriptions of initialization don’t match their code.

	Slide 1: Deep Learning for Data Science DS 542
	Slide 2: Plan for Today
	Slide 3: Initialization
	Slide 4: Forward Pass
	Slide 5: Backward Pass
	Slide 6: Initialize weights to different variances
	Slide 7: How do we initialize weights to keep variance stable across layers?
	Slide 8: Aim: keep variance same between two layers
	Slide 9: Any Questions?
	Slide 10: Expectations
	Slide 11: Common Expectation Functions
	Slide 12: Rules for manipulating expectation
	Slide 13: Any Questions?
	Slide 14: Aim: keep variance same between two layers
	Slide 15: Now let’s prove:
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Aim: keep variance same between two layers
	Slide 23: Aim: keep variance same between two layers
	Slide 24: Aim: keep variance same between two layers
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Aim: keep variance same between two layers
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Aim: keep variance same between two layers
	Slide 35: He initialization (assumes ReLU)
	Slide 36
	Slide 37: Default Initialization in PyTorch
	Slide 38: Any Questions?
	Slide 39: Initialization Note
	Slide 40: Limitations of Initialization
	Slide 41: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
	Slide 42: Any Questions?
	Slide 43: Disclaimer
	Slide 44: Bonus Tip

