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Plan for Today

• Project 1
• The need for weights initialization
• Expectations Refresher
• The (Kaiming) He Initialization
• Lottery tickets
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Initialization

• Consider standard building block of NN in terms of pre-
activations:

• How do we initialize the biases and weights?
• Equivalent to choosing starting point in our gradient descent 

searches
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Forward Pass
• Consider standard building block of NN in terms of pre-activations:

• Set all the biases to 0

• Set weights to be normally distributed 
• mean 0 
• variance 𝜎Ω
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• What will happen as we move through the network if 𝜎Ω
2 is very small?

• What will happen as we move through the network if 𝜎Ω
2 is very large?
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Backward Pass

• What will happen as we propagate backwards 
through the network if 𝜎Ω

2 is very small?

• What will happen as we propagate backwards 
through the network if 𝜎Ω

2 is very large?
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Initialize weights to different variances

Exploding gradients

Vanishing gradients

100D Input
~ 𝑁(0,1)

6



How do we initialize weights to keep variance 
stable across layers?
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Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

Definition of variance:
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Any Questions?

??? • The need for weights 
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets



Expectations

Interpretation: what is the average value of g[x] when taking into account the probability of x? 

Consider discrete case and assume uniform probability so calculating g[x] reduces to taking average:  
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Common Expectation Functions
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Rules for manipulating expectation
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Any Questions?

??? • The need for weights 
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets



Aim: keep variance same between two layers

𝜎
𝑓𝑖

′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

Definition of variance:
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Now let’s prove:

Keeping in mind:
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Rule 1:

Rule 2:

Rule 3:

Def’n
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Rule 1:

Rule 2:

Rule 3:

Def’n
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Rule 1:

Rule 2:

Rule 3:

Def’n
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Rule 1:

Rule 2:

Rule 3:

Def’n
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Rule 1:

Rule 2:

Rule 3:

Def’n
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Rule 1:

Rule 2:

Rule 3:

Def’n
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Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′2 − 𝔼 𝑓𝑖
′ 2

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2
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Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′2 − 𝔼 𝑓𝑖
′ 2

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2
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Focus on this term.



Aim: keep variance same between two layers

Consider the mean of the pre-activations:
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Rule 1:

Rule 2:

Rule 3:

Rule 4:
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Rule 1:

Rule 2:

Rule 3:

Rule 4:
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Rule 1:

Rule 2:

Rule 3:

Rule 4:

Start making initialization choices.

• Set all the biases to 0

• Weights normally distributed 
• mean 0 
• variance 𝜎Ω

2
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Aim: keep variance same between two layers

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′2 − 𝔼 𝑓𝑖
′ 2 = 𝔼 𝑓𝑖

′2

𝜎𝑓′
2 = 𝔼 𝑓𝑖

′ − 𝔼 𝑓𝑖
′ 2

0
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Rule 1:

Rule 2:

Rule 3:

Rule 4:

Set all the biases to 0

Weights normally distributed 
mean 0 
variance 𝜎Ω

2
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Initialization choices.

• Set all the biases to 0

• Weights normally distributed 
• mean 0 
• variance 𝜎Ω
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Rule 1:

Rule 2:

Rule 3:

Rule 4:
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Rule 1:

Rule 2:

Rule 3:

Rule 4:

For all the cross 
terms, 𝐸 Ωij = 0 so 
only the squared 
terms are left, then 
use independence. 
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Initialization choices.

• Set all the biases to 0

• Weights normally distributed 
• mean 0 
• variance 𝜎Ω

2
 



Rule 1:

Rule 2:

Rule 3:

Rule 4:

Because the Ω’s are 
zero mean, this is the 
variance.
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Initialization choices.

• Set all the biases to 0

• Weights normally distributed 
• mean 0 
• variance 𝜎Ω

2
 



From the definition of expectation.

Only positive integral limits 
because of ReLU

½ of the variance for zero mean 
distribution
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Aim: keep variance same between two layers

Should choose:

This is called He initialization or Kaiming initialization. 

𝜎𝑓′
2 = 𝜎𝑓

2

Since:

To get:

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” Proc. IEEE International Conference 
on Computer Vision, 2015, pp. 1026–1034. Accessed: Feb. 11, 2024. 34

Kaiming He何恺明

https://people.csail.mit.edu/kaiming/



He initialization (assumes ReLU)

• Forward pass:  want the variance of hidden unit activations in 
layer k+1 to be the same as variance of activations in layer k:

• Backward pass:  want the variance of gradients at layer k to be the 
same as variance of gradient in layer k+1:

Number of units at layer k

Number of units at layer k+1
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Exploding gradients

Vanishing gradients
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Default Initialization in PyTorch
https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_ 
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https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_


Any Questions?

??? • The need for weights 
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets



Initialization Note

A good initialization does not prevent gradient descent from changing the 
weights a lot.

● A good initialization keeps the initial gradients modestly sized,
● And modest gradients reduce wild swings in parameters with 

gradient descent
● Smaller learning rates also help with this.
● Next week’s topic, regularization, will directly address this.



Limitations of Initialization

● No guarantees that the model will train to low losses
● No guarantees that training process won’t lead to large values or 

gradients
● No guarantees that the model won’t have lots of inactive units

○ In fact, the estimates adjusted for half being inactive!

● In fact, much of the network is often useless, and could be pruned 
away!



The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks
Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, 
decreasing storage requirements and improving computational performance of inference without compromising 
accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to 
train from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them 
capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, 
randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in 
isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning 
tickets we find have won the initialization lottery: their connections have initial weights that make training 
particularly effective.

We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket 
hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less 
than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and 
CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher 
test accuracy.

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635


Any Questions?

??? • The need for weights 
initialization

• Expectations Refresher
• The (Kaiming) He initialization
• Lottery tickets



Disclaimer

• Just because variance of gradients starts the same does not mean 
that the variance of gradients stays the same.

• You should still check the gradients if you are having training 
difficulties…



Bonus Tip

• If you are trying to implement a model based on a paper, and you 
are having trouble training, check if they shared their code.
• Many papers omit important initialization details.

• Especially if they say that their method is not sensitive to initialization.

• Also, some paper descriptions of initialization don’t match their code.
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